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Abstract—C-2 lithiation of acetals 2 followed by trapping with aldehydes gives 3. Subsequent unmasking of the acetal function
provides furobenzo(thio)pyrans 4, cycloadditions of which have been investigated. © 2002 Elsevier Science Ltd. All rights
reserved.

Cycloadditions to 2,3-dimethylidenechroman-4-ones 1
(X, Y=H or substituent) would offer an entry to
2,3-disubstituted 9H-xanthen-9-ones and linear fused
derivatives. The intermediacy of 1 (X=NH-NMe2, Y=
H) is evident in the cycloaddition of 3-(dimethyl-
hydrazonomethyl)-2-methylchromone with N-methyl-
maleimide (NMM),1 and 1 (X=OH, Y=H) has been

Scheme 1. Reagents and conditions : (i) LTMP, THF, −78°C; (ii) RCHO; (iii) TsOH (cat.), PhMe, ca. 50°C; (iv) NaBH4 1 equiv.,
MeOH.
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invoked in the base-catalysed deacylative dimerisation of
3-acetylchromone.2 A more versatile approach to deriva-
tives of 1 would permit access to a wide range
of xanthone-containing systems, for which few cyclo-
addition strategies exist. We sought, therefore, to
investigate stable synthetic equivalents of 1 and focussed
on derivatives of furo[3,4-b ][1]benzopyran-9-one. Very
few of these compounds are known, and their chemistry
remains unexplored.3 The cycloaddition chemistry of
furans and their iso-condensed derivatives represents an
area of significant current interest.4

We now report an expedient and versatile synthesis of
furo[3,4-b ][1]benzopyran-9-ones and some of their
cycloaddition chemistry. We have shown that the readily
available acetal 2 (Z=O) can be metallated with lithium
2,2,6,6-tetramethylpiperidide (LTMP), and the C-2 lithio
derivative intercepted with electrophiles.5 Extension of
this chemistry provided 3a–d in useful yields (40–56%).6

Unmasking of the acetal function proceeded rapidly with
a trace of TsOH in warm toluene, with concomitant
cyclisation and elimination of propanediol, presumably
via the dioxyallyl cation 3A (Z=O), to give the furoben-
zopyrans 4a–d (45–67%) (Scheme 1). Attempts to obtain
3e via anhydrous HCHO failed. However, reduction of
55 proceeded chemospecifically to give 3e (77%, mp
126–127°C), unfortunately, treatment with TsOH failed
to give an identifiable product, even in the presence of
a dienophile.

The thiochromone 2 (Z=S) was converted to 4f (62.5%
overall, mp 183.5–184.5°C) by an identical protocol
(Scheme 1), in this case the lithiation proceeded more
efficiently than 2 (Z=O). Cycloadditions of 4a–d and the
furobenzothiopyran 4f have been investigated. When 4a
was treated with methyl propiolate (MP) (PhMe, rt, 48
h) flash chromatography provided a new compound
(43%, mp 228–229°C). Both NMR and HRMS indicated
this was a 2:1 adduct of 4a with MP (Scheme 2). The 1H
and 13C NMR spectra were consistent with the syn
exo–endo adduct 6, which was proved unequivocally by
X-ray crystallography7 (Fig. 1). The octacycle 6 is
remarkable since it represents the first example of a
pincer adduct from cycloaddition of an unsymmetrically
substituted furan with a propiolic ester,8 although an
intramolecular pincer addition of MP to 1,3-bis(2-

furyl)propane has been reported.9 The syn orientation of
6 can be considered as the outcome of ‘double ortho ’
regiocontrol. Evidently electronic factors are sufficient to
over-ride unfavourable interactions arising between the
Me groups in the addition of 4a to the 1:1 adduct.10 The
stereochemistry of 6 is in accord with both observations
and semi-empirical calculations4,11 that indicate, under
kinetic conditions, pincer Diels–Alder reactions of furans
lead to exo–endo adducts preferentially. We were unable
to observe the 1:1 adduct from 4a and MP; the reaction
gave 6 directly. Furan 4c failed to react with MP,
presumably steric factors account for its diminished
reactivity.

Reaction of 4a with DMAD gave the 1:1 adduct 7a as
the only characterisable product. However, under the
same conditions 4c gave two compounds the least polar
(TLC) of which was 7c (52%, mp 149.0–149.6°C). The
polar compound exhibited very simple 1H and 13C NMR
spectra consistent with a highly symmetrical structure
whilst CI-HRMS exhibited [MH]+ at m/z 695.1912
corresponding to C42H30O10. This data is only compat-
ible with the C2 symmetric, anti exo–exo adduct 812 (24%,
mp 225–226°C). Formation of 8 parallels the behaviour
of 2-methylfuran towards symmetrical acetylenes.9 Sur-
prisingly, we did not observe any of the analogous 2:1
adduct from the cycloaddition of 4f with DMAD, the
only product being 9 (45%, mp 176–177°C). Although 4d
reacted with DMAD it provided a highly complex
mixture that we failed to resolve.

Scheme 2. Reagents and conditions : (i) HC�CCO2Me, PhMe, rt, 48 h; (ii) MeO2CC�CCO2Me, PhMe, �, 2 h.
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Figure 1. Perspective view and X-ray crystal structure of cycloadduct 6.

Compound 4b and NMM (PhMe, rt, 6 h) gave both
exo 10a and endo 10b adducts (79% overall, ratio
2.75:1) from which only the former could be obtained
pure (mp 257–259°C) by chromatography. In contrast
4b reacted slowly with 1,4-naphthoquinone and gave
the endo adduct 11 exclusively.

Dramatically differing behaviour was exhibited in the
acid-catalysed aromatisation (aq. HCl, MeOH, �) of 7c
and 9 (Scheme 3). Whilst the latter gave the expected
hydroxythioxanthone 12 [red needles, 82%, mp 218–
220°C, �(CDCl3) 16.65, OH] the former provided,
remarkably, the furan diester 1313 (68%) together with

4-hydroxycoumarin (77%). This unique and unprece-
dented pathway formally represents a hydrolytic retro
Diels–Alder (RDA) reaction of a 7-oxabicy-
clo[2.2.1]heptadiene ring. Cleavage of 7c is triggered by
protonation of the chromone carbonyl group that pro-
motes conjugate addition of water to C-4a (Scheme 3);
collapse of the intermediate hemiacetal ensues. The
hemiacetal may be regarded as the [4+2] adduct of 13
and 2-hydroxychromone, a minor tautomer of 4-
hydroxycoumarin. The differing reactivity of 7c and 9
stems from higher basicity of the carbonyl group in the
chromone than in the thiochromone system, due to
diminished heteroatom p–� conjugation in the latter. In
accord with this, a study of electrostatic potentials
predicted that C-2 in chromones is more electrophilic
than C-4, and that replacement of ring O by S pro-
motes a reversal in reactivity.14 The reaction 7c�13 is
noteworthy since it generates a furan with a new substi-
tution pattern. Other acid promoted RDA reactions of
7-oxabicycloheptadienes are known, but these merely
furnish the addends.15
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